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Introduction
This paper discusses some questions about register allocation and code generation in optimiing compilers.

he context of the research is the PQCC (Production Quality Compiler-Compiler) project. 'he questions

discussed include fundamental questions of compiler structure, that is, questions of the feasibility and

correctness of the approach taken by the project. I will also report on less fundamental issues, issues more or

less orthogonal to the questions of structure. This discussion should be of interest to any designer of

optimizing compilers who is interested in retargetability, that is, in the adaptability of such a compiler to

modification to allow code generation for different target machines.

Overviews of the PQCC project have been given in other papers.8-9, 14 The following statement of its

research goals is taken verbatim from one of those papers: 8

The Production Quality Compiler-Compiler (PQCC) project is an investigation of the code
generation process. The practical goal of the project is to build a truly automatic compiler-writing
system: compilers built with this system will be competitive in every respect with the best hand-
generated compilers of today. They must generate highly optimized object code, and meet high
standards of reliability and reasonable standards of performance. The system must operate from
descriptions of both the source language and the target computer. The cost of bringing up a new
compiler, given a suitable language description and target architecture description, must be small
- on the order of three man-months, withoat assistance from builders, maintainers, or other
persons deeply involved in the original system.

After living out the usual life-span of large academic research projects, the PQCC project was reduced

substantially in size and level of activity in July of 1981.. This followed the demonstration of a system, various

parts of which fit various parts of the above description to varying degrees. Now, therefore, seems as good a

time as any for a summary of the results of the project.

The contribution of this paper to that goal is primarily as a postscript to a comprehensive treatise by the

3ame author, Register Allocation in Optimizing Compilers10 (hereafter referred to as RAOC). We have

Icarned a great deal of a practical nature since that was published in February of 1981, particularly in the

weeks immediately preceding the demonstration in July. This paper is meant to be self-contained, that is, the

reader should not have to read the larger work in order to understand this one. It should be emphasized,

however, that this paper is not an overview of the project, but an updating of research results and conclusions.

1. Code Generation and Code Generator Generation
We designated a set of phases, operating serially, into which any PQCC-generatcd compiler would be

divided. Associated with each phase was a phase generator or phase generation program, which, given

straightforward descriptions of the target machine and/or the language to be compiled, was to extract and

analyze information necessary for the operation of the phase, and to organize the information into tables



2

suitable for direct use by the phase. (Thus the phase generator runs at "compiler-compilation time." and the

phase itself runs at "compilation time.") I use the word "tablcs" in a very broad sense: some of the phase

generators produced code. which could be linked in with the compiler. in most cases, however, a phase

consisted of code that was independent of the target machine and language (and therefore could be common
to all generated compilers) and tables holding machine- and language-dependent information.

Below I will use the term code generation to refer to a series of phases. and code generator generator (CGG)

to refer to the set of phase generators for those phases. The phases we include under this heading perform

both register allocation, the construction of a mapping between data values (and objects) and target-machine

storage locations, and code selection, the choice between alternative target-machine code sequences to

implement each source-program action. In the PQCC organization of phases, there are two phases that

perform code selection, as described in Section 2. Each uses a library of code selection templates. A template

consists of a pattern, a description of some source-language feature or combination of features, and a code

sequence that could be used to implement that feature. Typical features are arithmetic and logical operators;

for example, a template might describe an implementaton of single-precision integer addition. If a target

machine has several instructions each of which could implement this operator, each would be represented in

the library by its own template, and the different templates would have very similar patterns. As the source

program is represented during compilation by a tree, the patterns likewise take the form of trees. We use the

term patter,' matching for the action of a code selection phase. Starting at the root of the source-program tree,

it finds applicable templates for each operation, choosing one before proceeding downward by the tree

branches.

We reconsidered the division of labor among the compiler, the phase generation programs, and the person

who draws up the target machine description. The critical questioui for the practical compiler builder is about

the extent to which he should develop or refine his tools, e.g. the phase generators, given that his goals may be

more modest and his constraints more severe than those of the PQCC research project. Section 1.1 discusses

this question and describes our own response to considerations of practicality, as reflected in the design of the

CGG. Another important question, more or less orthogonal to the first, concerns the efficiency of code

selection: are there obstacles that prevent a pattern-matching code generator, such as we used, from

competing in efficiency with more conventionally hand-coded systems? Section 1.2 summarizes some of the

sources of inefficiency in the pattern matchers we implemented, and explains how these can be dealt with.
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1.1. Development of Tools

The CGG proposed, and implemented in prototype, by Cattel 2 pcrformed search. Thus. it fi~nd non-

trivial connections between source-language constructs and targct-machinc features. In addition, it

performed the low-level function of assenbhy: the code generation templates were sorted and classified:

information that had been human-readable in the original machine description was compressed to a format

suitable for direct use by the compiler: cross-references between different parts of the code generation tables

were recorded. Search and assembly are obvious candidates for automated processing in a CGG: in addition,

analysis of the machine description to derive various summary data, or even to construct large tables, is

required for most phases.*

Because more than one phase, in the PQCC design, requires information derived from the search process,

we were required to separate search from assembly. To do this, and for other reasons, we abandoned Cattelrs

prototype CGG and set about to construct separate search and assembly programs from scratch. (Analysis
was to be done by the search program, although in principle it might best be done niy the assembly piograms

for the separate phases, since each phase has its own analysis requirements.) The input to any assembly

program, and the output of the search program, was to be in an intermediate format, human-readable but

including various rather cryptic notations giving the results of analysis. At this point, however,
"considerations of practicality" were allowed to intervene decisively. We never rebuilt the search and analysis

program: instead, in about one man-week of effort by personnel who were thoroughly familiar with the

PQCC design, we drew up a single machine description in the intermediate format. Later, we constructed

other machine descriptions, but only the first one was tested and debugged. (Appendix 11 gives some

representative pages from that description, which was for the DEC VAX-l.)

This compromise was motivated, not simply by project deadlines, but also by the prospect that the system

would be tested only for a small number of target machines. The project goal of using machine descriptions

that could be drawn up by persons unfamiliar with compiler technology, or at least unfamiliar with PQCC
technology, was not achieved. With regard to the equally important goal of using the same machine

description to provide tables for scveral phases, what we achieved was quite satisfactory: almost all the tables

and all the template libraries used by the code generation phases were assembled from the same intermediate-

format machine description. I am convinced that the effort spent to attain this end saved us countless

headaches in the compiler implementation and debugging.

The preliminary function of snholic execution. or dcrvalim of a machine description in rat tcll' MOP format from a procedural
format %uch as ISP, was implemented in prototype by Oakley but wi-. npvcr incorporated :ni' " PCC systcm.
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1.2. Efficiency of the Pattern Matcher

In the total system that we had implemented as of July 1981, the code selection phases were not bottlenecks

(see Appendix 1). Nevertheless. some obvious sources of inefficiency in the design of our pattern matchers

have been brought to our attention. 1 will discuss them here, as they could be important in the construction of

systems in whic'i the speed of the code selector is critical to the speed of the compiler as a whole.

Consider the task of selecting between equivalent instructions or sequences to implement an operation,

sequences differing only in the storage requirements they impose on their operands or in the classes of storage

in which they leave their results. An example of this selection, also used in RAOC. I° " dh 11 is taken from the

IBM S/370. The logical AND operation between four-byte operands on this machine is done with one of

three instructions, whose mnemonics are NR, N, and NC. Denote the target operand (the operand whose

contents will be replaced by the result of the operation) as t. and the other (non-target) as at. The choice

among the three instructions depends on the storage allocated for t and at, as shown in Figure 1-1:

Storage classes used Best code sequence
T NT

accumulator accumulator NR T, NT

accumulator memory N T, NT

memory memory NC T(4), NT

memory accumulator ST NT, X ; store at to memory
NC T(4), X

Figure 1-1: Implementations oft t & at on the IBM 370

Note that the last code sequence requires a free memory location, denoted x, since nt cannot be used by the

NC instruction in this case, its contents are copied into x. and x is used.

This example illustrates several features that are characteristic of such code selection problems. First, in

one of the cases (the last one). one of the operands will have to be copied to a free (temporary) location no

matter which of the three instructions is used* it happens here that the best code sequence is one in which at is

copied. I refer to this copying as operand loading. Second, the best code sequence for any case is not the only

code sequence for that case; in fact, with suitable operand loading (and possibly restoring of the result), any of

the three instructions could be used for any of the four cases. For instance, the NR instruction could be used

for the second case, if nt is first copied into a free accumulator.

.. ,* .. '..~,* . .. *, . r. .
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In the main code selector of our July 1981 implementation. the choice oftie best code sequence for each

case is done bh comparison o' code sequence and opernd loading costs recorded in the machine description.

Thus. each of the three instructions (N, NR. NC) has a base cost (perhaps its size in bytes. or an execution

time in units of one minor cycle): there may be :Adidonal opcrund costs if some operands cost more to access

than others (this is not characteristic of the S/370, but in some aichitectures the same instruction can operate

on either fast registers or memory); and the costs of opcrand loading (data moremen cosis) are likewise

available from the machine description. Whenever an instance of four-byte logical intersection is

encountered during code selection, the above three costs are noted or estimated for each of the three possible

code sequences. and the one with the least total cost is chosen.

Clearly it is wasteful that this derivation of "best" code sequences is done by the code selector on a

case-by-case basis, rather than by the CGG. The code selector should not have to evaluate costs at all: it

could work from tables similar in structure to Figure 1-1, in which costs do not appear.

Actually the simple tabular format used in Figure 1-1 is suitable only for choosing among code sequences

that are exactly equivalent to each other. Sometimes a choice must be made between code sequences that do

not implement exactly the same portions of the source program: an example of this. the choice between using

single indexing and double indexing on the DEC VAX-i1. is presented in Section 2. To handle such choices.

we associated a benefit value with each pattern tree, representing an estimate of the cost saved by finding a

code sequence to implement that tree rather than, for instance, finding a series of code sequences to

implement the smaller subtrees of which it is composed. (A more exact definition of benefit is given in

Section 6.) The benefit of a template is in the same units as its base cost (and other costs), but is subtracted

from the final total of costs.

For the code selector to be able to get along without costs or benefits, each template must be associated

with a specification of the conditions (requirements on the storage allocation of its operands and result) under

which it would be used in preference to other templates. If these specifications are to be generated

automatically. the CGG must do a comprehensive case analysis examining costs and benefits. For the

implementor who takes the path, described in Section 1.1. of doing this and other CGG analysis functions "by

hand", it is still useful to start from a machine description augmented with costs and benefits.

From the description of pattern matching given by Cattell,2.3 it is easy to spot another source of

inefficiency: the pattern matching for cacti template is separate from the pattern matching for every other

template. In our S/370 example, each of the three logical ANI) instructions is represented by a template with

its own tree pattern, but all the tree patterns are identical. When our code selector examines the three

templates. it matches each of the tree patterns against the source program tree. getting of course the same

44*0
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(affirmative or negatic) rcsult each time. This is obviouslx wasteful, but more generally. there is waste an)

time more than one pattern is matched.

The pattern matcher we used was streamlined, by various ad hoc methods, such that little or no effort was
wasted in the processing of templates with simple pattern trees in common cases. 15 Rather than describe these

methods, however. I draw the reader's attention to a more systematic way of achieving efficiency: the code

generator may be organized as a parser (the machine description plays the role of a grammar). The

elimination, by the COG, of the waste described above is similar in spirit to the optimization of a finite-state

machine. Ganapathi 5 has demonstrated that it is exactly equivalent to the adaptation of agrammar to the use

of "standard context-free parsing techniques (which forbid backup)". He has implemented, in prototype, a

code selector approximately equivalent in function to our main code selector, structured as a parser, operating

with a machine description structured as an attributed context-free grammar.

2. The PQCC Phase Order
With the PQCC project. we gained additional experience with the three-phase organization of code

generation and register allocation that had appeared in the Bliss-l1 compiler. 13 A detailed description of this

strategy and justification of it are given in RAOC; 10 here. I will only briefly summarize it. A preliminary code

selection phase (LTN) goes through the motions of code selection, but does not produce a sequence of

instructions. Instead it produces a detailed accounting of the temporary storage that would be required for

use by those instructions. This accounting takes the form of placeholders called temporary names (TN's).

associated with nodes in the tree representation of the source program. Each TN represents a requirement for

one storage location (or contiguous group of locations), possibly but not necessarily restricted to particular

types of storage, such as "registers", "accumulators", "odd-numbered registers", or "index registers".

Information associated with a TN, accumulated during the code selection pass, includes a lifetime, indicating

the portions of the program during which the storage location must be reserved for it, and cost data from

which the importance of finding the "right" location for the TN, relative to the importance of other TN's, can

be estimated. Long-lived data items, such as user variables, are also represented by TN's. thus the

conventional distinction between "values" and "objects", or between "temporary" and "permanent" storage,

which is more or less irrelevant to storage allocation, is camouflaged in a single uniform representation of data

items.

The packing phase (PACK), which follows LTN, assigns the TN's to particular storage locations. The last

phase (CODE) performs actual code selection and generation. It may use its knowledge of what storage

location each data item has been assigned to in choosing between equally applicable code sequences. Choices

that are made on such a basis clearly cannot be made until after PACK: thus the preliminary code selection
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pass of I. I'N defers those choices, creating TN's on the basis of incomplete kno\k ledge of % hat storage may be

required.

The notion that I.TN must defer some code selection choices because it cannot use the results of PACK is

relatiuel) novel, and we made some mistakes with it in spite of our previous experience with the three-phase

organization in Bliss-1l. (The problem seldom arises with the PD)P- II because of the lack of redundancy in

its instruction set) For instance, consider the choice of implementations for integer addition on many

architectures, in which there are both general-purpose instructions to add two operands, and special purpose

"increment" instructions for use when one of the operands is 1 (or some other known small integer). At first

we did not defer the choice between increment and addition instructions: but the example of a code selection

problem shown in Figure 2-1. from an example given by Ganapathi 5 shows that in some cases it must

deferred.

The problem is to implement the statement a := el + 1, where a is a variable and el is some expression,

the DEC VAX-11. For each supported width of integers (in the example we use the doubleword or "Ion,

integer instructions), this architecture provides three instructions that perform addition: general-purpose

instructions in two-address and three-address format, and an increment instruction in one-address format. In

the example the choice between them depends on whether or not the variable a and the result of the

expression el are assigned to the same location.

Figure 2-1 shows the space of possible code sequences, using each of the three applicable addition

instructions for both cases of assignment of a and el. The best code sequence for the former case, marked
with an asterisk, and the best code sequence for the latter case, marked with a double asterisk, do not use the

same instruction. Thus the choice among instructions must be deferred until the assignments of a and el are

known, that is, until after the packing process.

We found cases that pose phase ordering problems: the desirability of deferring a choice conflicts with the

desirability of providing a complete picture of storage requirements for input to PACK. For instance, one of

two competing code sequences may require more or fewer storage locations than the other. An example of

this from the IBM S/370 is given in Section 1.2: an even more interesting example, from the DIC VAX-11, is

shown in Figure 2-2. (This example is taken from RAOC. 10 " .4) Consider the implementation of the array

access a := b [i + 51: assume that the array b is accessed through a pointer to its base, denoted x5, The
VAX-1I offers both normal indexing and scaled indexing, in which the contents of the index register may be

multiplied by 2. 4. or 8 befire being added to the offset: scaling is useful for access to arrays of 2-byte. 4-byte,

or 8-byte elements, since the memory is byte-addressed. In our example, the array b is an array of one-byte

elements, so the scaling itself is irrelevant, and if a scaled index register is used in the access to an element of



a and el assigned a and el assigned
to the same location to different locations

Increment instruction INCL A MOVL El. A
INCL A

Two-address instruction ADDL2 #1, A MOVL El. A
ADDL2 #1, A

Three-address instruction ADDL3 A. #1. A ADDL3 El, # 1, A

Figure 2-1: Implementations of a := el + 1 on the DEC VAX-1I

b. it is used exactly as an ordinary index (the scale factor is 1). Any operand addressing computation can use

both an unsealed and a scaled register: thus, the access to b [i + 5] can use two registers for double indexing,

as shown in code sequence a. or can use one register after adding the two indexes, as shown in sequence b. As

the two sequences are presented. a is smaller and faster than b, but xb and i must be in registers for code

sequence a, and if they are not assigned to registers by PACK. the cost of loading them for temporary use tips

the balance in favor of code sequence t.

MOVB 5(XB)[I], A ADDL3 XB, I, FR
MOVB 5(FR), A

a) xb and i are both assigned to registers: b) xb and i arc both 3ssigned to memory;
fr is a free register.

Figure 2-2: Implementations of a := bji + 5] on the DEC VAX-11

Note that code sequence ! requires a storage location, fr, distinct from either i or xb. while sequence a does

not. In dcferring the choice between these two sequences, UI'N may create a TN to represent FR, or it may

refrain from doing so. If it creates the TN, and PACK chooses a register, e.g. R2, for use as Fr, but then

CODE chooses the code sequence that does not use fr, then R2 has been wasted, that is, reserved for a

purpose for which it is not used. This, in turn, may prevent some other data item from being assigned to R2.

lhie program may use more registers than necessary, or even use more than there arc, requiring data to be

spilled (unnecessarily) into memory.

On the other hand, if LTN refrains from creating a TN for fr, CODE is left to find a free register "on the

fly" if it chooses the code sequence that requires one. 11oth theoretical and practical problems arise: there
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maN not be am free registers axailablc at that point in the program (a rather unlikel. possibilit on the

VAX-I1. but quite likel. in analogous situations on some other architectures). and a mechanism must he

unpcnienced to alloA COI)F to carr out on the tly some of the functionalit of [HN and PACK.

['he ahome example is rather exouc: man% target architectures, after all. offer neither three-address

instrucuons nor double indexing. A related problem is quite commonplace: the problem of deferring the

decision of whether or not to create a TN for operand loading. For instance. LTN may recognize that a

record access, such as salar, of employee, is to be implemented by indexing, but it cannot know whether the

index value (the pointer to the record employee) will be allocated to an index register, or will have to be

loaded into one on the spot. LTN may either create, or refrain from creating, a TN to represent the index

register in the loading. A reasonable compromise is to create what is called l° Ch 6 a copy TN. T, with a special

relationship with the TN that represents employee: PACK recognizes that if employee is assigned to a register,

T need not be assigned to anything, and if at that point in the packing process T has already been assigned, its

assignment may be "undone". In the example of Figure 2-2, there is no such simple relationship between fr

and any other'TN.

Even when two equivalent code sequences do not have different requirements for TN's. they may lead to

different lifetime characteristics for existing TN's. A complete definition of the concept of lifetime is

postponed until Section 3: at this point, the nature of the phase ordering problem can be summarized by

saying that PACK should have a complete picture of the sequentiality of initializations, updates, and uses of

all the data items represented by TN's. For instance, if PACK thinks that the last use of variable a occurs (in a

straight-line program) before the initialization of variable b, it may assign a and b to the same storage location:

but if CODE then chooses a code sequence that reverses the order of these two events, the resulting generated

code is almost sure to be incorrect. This disaster can be avoided by using "conservative" lifetime information

in PACK, but this can lead to waste of storage.

An example of this problem is shown in Figure 2-3. Both code sequences in the figure compute the

difference of el and e2. both of which are arbitrary integer expressions. Both sequences leave the result in

location t. In code sequence , the lifetime of t overlaps with that of the value of e2. that is, they must not be

assigned to, the same location. In code sequence b. they don't overlap. The use of conservative lifetime

information would prevent e2 and t from being assigned to the same location, this is necessary for code

sequence _4, but that sharing of storage might be a useful option when sequence b is to be used.

The above examples show that the three-phase structure for register allocation and code generation is by no

means a definitive solution to the fundamental phase ordering problem, which is that each of the processes.

register allocation and code selection, gives best results if it runs aftcr the other. But the three-phase structure

. ... . I-,I '1 - m 
I

l .
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Compute el Compute el
Compute e2 Compute e2
load el into t SUBI.3 El. F2, T
SUBL2 E2, T

a) using 2-address subtraction: b) using 3-address subtraction.

Figure 2-3: Implementations oft := el - e2 on the DEC VAX-11

yields the benefits, in the quality of the code generated. that we have advertised for it, 10 without

compromising the efficiency of the compiler (at least by comparison with other compilers that perform global

register allocation). Although we learned of problems we hadn't known about before when we began to

investigate target machines beyond the DEC PDP-11. serious objections to the overall strategy did not arise.

3. Stages of Operations
If two data items are to share a storage location, they must not both try to make use of it at the same time:

updating or creation of one must not destroy the other. To prevent this, we define a lifetime for each TN, an

enumeration of those portions of the program during which it must have exclusive use of the storage to which

it is assigned. In any straight-line segment of the program, the lifetime extends from creations or updates of

the data forward to uses of it. The lifetimes of TN's are said to overlap if they include in common some point

of the program: the TN's are said to conflict with each other, and must not be assigned to the same storage

locations. The compiler includes a lifetime analysis phase. in which the lifetime of each TN is derived from a

list of the creations, updates, and uses of the data item and from a graph of the control flow of the program.

The lifetime of a TN is naturally represented as a set of segments of the program, each a portion of a basic

block, that is. a sequence of instructions without branches or jumps. A value v. for instance, may be said to be

alive "from instruction i to instruction i2". or even more precisely "from the write-cycle of instruction i1 to

the nh read-cycle of instruction i2". As described in Section 2. lifetime analysis in the PQCC compiler

organization is performed before the object instructions are available, that is. before the CODE phase. It is

necessary to describe 'N lifetimes in terms of the results of the LITN phase: it is desirable to approach closely

the precision that would be fully available only after the CODE phase.

For this purpose lifetimes are described in terms of operations and stages thereof. Each subtrce of the

program tree that matches an entire code generation template is designated an operation, or a single

subdivision of "time" for the purpose of lifetime description. These subdivisions are further divided into

units by a three-stage scheme, intended to fit any code sequence implementing an expression. If it fits rather



losclN. at least it is to tit in such a %%a. that each instruction of the sequcnce belongs to exactl one stage and

that tie data flo implicit in the definition of each stige actually occurs during it. The stages are as fillows:

* operand loadi,. including an. instructions reqtired to position operands in special-purpose
storage, such as accumulators or index registers-

* result evaluation, in which the value of the expression is computed;

* result saving, including any instructions required to save the value of the expression in order to
free special-purpose storage for further use.

Thus the lifetime of value v might be described as, for instance, "from the result saving stage of (the operation

represented by) node n, to the operand loading stage of node n,". Knowledge of the simple three-stage

model is built into LTN: it follows an equally simple plan for the creation of TN's for each operation, varying

only slightly with variations in the structure of the code sequences, and it uses a simple and fixed model of

how and when (during which stages) each of the values or objects involved in an operation is accessed.

Clearly. this simplicity is conducive to simplicity in the structure of LTN. but it has drawbacks as well. I will

explain here some of the shortcomings of the particular three-stage model we used.

One deficiency is the analogue of the deficiency of the simplest model of lifetimes in terms of object

instructions. Consider the definition of the result saving stage. In the normal case. for an operation Q
returning a value, LTN creates a TN to represent the location in which the value is ultimately computed (the

Eval TN). and a TN to represent the location in which the value is then saved, if saving is necessary (the Save

TN). LTN records that the Eval location is read and the Save location is written during the result saving stage

of Q. Thus, both TN's are alive at that "moment". and they are disallowed from sharing storage. Obviously it

would be legal for them to share storage, however: in fact, for many target machines, in which registers for

evaluating expressions are plentiful, result saving code is seldom necessary and the two TN's should almost

always be assigned to the same storage. Thus it should be recognized that result saving has a "read-cycle" and

a "write-cycle". which are two different nioments in time, that is, two different stages. More generally, in any

simple scheme of stages, there should be enough of them to separate the reading of sources of data

movements from the subsequent writing of destinations.

The use of a single "result evaluation" stage is inadequate for different reasons. Early versions of UTN

assumed that. except in the case of instructions with target operands (those in which one of the operands is

both read and modified), all the operands of an operation are read before the result is written, and hence can

share storage with the result. A classic and well-known countcrexamplc is the matrix multiplication operation

in many matrix manipulation packages: ordinarily, the reading of the operand matrices is intcrleaved with

the creation of the result matrix in such a way that they must not share storage. and if the package itself does

not detect sharing and allocate the necessary temporary intermediate storage, the user must do so.

..i ..
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Matrix multiplication is not t. pical of the problems faced b optimizing compilers. " hich historically have

been concerned with lom-levcl operations (i.e. operations supported directly b. target-machine instructions)

and scalar (or very simple vector) objects. but it is a familiar illustration of the principle involved. A humbler

example is the computation and storage of a boolean value. such as the result of a comparison, on many target

architectures. Here is the skeleton of a code sequence for the statement b := (el : e2), in which b is a

boolean variable and el and e2 are arbitrary arithmetic expressions, for any of several popular architectures:

Compute el
Compute e2
Initialize b to false
Compare el with e2: jump to L if they are equal
Set b to true

L:

In this code sequence b must not share storage with the results of el or e2. This contrasts with the situation

for, for instance, three-address arithmetic on the CDC 6600 or the DEC VAX-Il, in which the result may

share storage with either of the operands. It appears that, for a single model of operations to be general

enough to describe both kinds of operators, it would have to be even simpler than the present three-stage

model, at a corresponding sacrifice of precision in describing TN lifetimes. Precision could be retained only

by the use of different models for different operators, at a sacrifice of compiler simplicity.

4. Data Types

One reason that we chose to implement Ada in later stages of the PQCC project, rather than sticking with

simpler languages such as Bliss or C, was that we wanted to explore the effects of common high-level language

features on optimization. Particularly interesting language features in this regard are well-supported data

types and automatic run-time error checking. As of July 1981, we had identified some of the problems

introduced by data types, but most of these had not been solved in the compiler, and the solutions that had

been implemented had not been tested to our satisfaction. Here I will discuss some of the problems and

proposals for solutions. (I have omitted a discussion of the problems associated with array and record data

types, as I was not familiar with that pan of the research, nor indeed with the subtleties of the relevant

features of the Ada language.)

4.1. Addresses, Integers, and Integer Ranges

Different source-language data types may be represented by the same target-machine data type. A set of

optimizations may be applicable if some instructions or instruction sequences that implement operations on

one type also implement useful operations on another. This is the case for addresses and integers on some

target machines, and likewise for "si acd" and "unsigned" integers on some (two's-complement) machines.

.... ....... . .. . . .. ... ... . . . .- , i .'- ' ' -... . C, - ,,, ,
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l-\cn for language, that do not support explicit manipulation of addresscs. we treat addresses as a full-

fledged data t. pe. to simplfy die processing of arraN and record accesses. Thus indexig is an operation that

takes an address and an integer and returns an address. distinguished from but related to addition, which takes

to integers and returns an integer. On some target machines the same instruction normally used for addition

may also be used for indexing. More exotically, on some machines with support in the operand addressing

hardware for indexing, the same support may be used for addition. For instance. on the IBM S/370. indexing

may be used to add 24-bit integers under some conditions, and on the DEC PDP-10, indexing may be used to

add 18-bit integers.

This simulation of one operation by another may be impeded or prevented outright by the requirements

for, or prohibitions against, run-time error checking. The hardware support for addition may provide

automatic trapping for overflow, which must be suppressed if indexing is to be simulated. 'he hardware

support for indexing normally provides no checking whatever for overflow, and hence cannot simulate

addition if such checking is needed.

It may happen that two data types are represented differently, but some operations on one type are

implementable using coercion of operands to the other type and possibly coercion of the result back to the

original type. A set of optimizations is applicable if the coercions are particularly inexpensive, that is. if

alternative implementations (with and without coercions) of the same operation may be competitive in cost.

This description fits operations such as addition and multiplication on the data types representing integers of

different sizes (different ranges) on many target machines.

In general, with addition and multiplication (but not with other operations). an operation on large (wide)

operands yielding a result of the same width can be used to simulate an operation on smaller operands. With

some other operations, such as division or comparison, such simulation is not so easy but is still possible: after

explicit coercion of the operands to the large form (i.e. sign-extension or extension with zeroes), an operation

on the large operands will give a result from which the correct small-operand result can be extracted (or, in

the case of comparison, will give the same boolean result).

Here is a (probably incomplete) list of what the compiler should know about integers and addresses, and

what optimizations it should be capable of discovering:

1. For target machines in which addresses are identical to unsigned integers, the compiler should
"know about" (take advantage of) the identity.

2. For machines that support operations on both signed and unsigned integers, the compiler should
know about such support.
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3. The integer operations of array subscript calculation (multiplication of dimensions and strides.
alhng. and addition) Should be pertirmed using integers of" ",ppropriate" width. Here are

considerations that may influence the choice of width:

a. Ovcrflow checking of these operations ma be unnecessary, especially if there is already
checking of subscript bounds (either at compile time or at run time).

b. The operands and results can frequently be guaranteed to be all non-negative.

c. Operations on short integers are usually less costly than operations on wide integers.

4. The compiler should know if indexing can be simulated by addition.

5. The compiler should know if indexing can simulate addition. Also,

a. For machines in which this simulation is available only for certain special cases of addition
(e.g. the DEC PDP-10 and the IBM S/370), the compiler should recognize those special
cases.

b. If there are language or implementation requirements for overflow checking, and if there is
hardware support for such checking, the compiler should take into account any effect this
has on the simulation (e.g. addition is checked but indexing is not).

6. The simulation of short-integer operations by wide-integer operations should be routinely used
whenever it is the best (or only) implementation of the short-integer operation. This includes:

a. direct simulation, as with addition and multiplication;

b. simulation after explicit coercion of operands, as with division and comparison;

c. recognition that certain instructions, such as ADDI or MULl on the DEC PDP-10, can
always be used for short-integer operations, though they can be used for wide-integer
operations only for restricted classes of operands.

Items I and 2 on this "wish list" may seem trivial, but they impose significant requirements on the machine

description language. Signed and unsigned operations must be distinct: thus, for instance, the version of ISP

exemplified by the description of the CDC 6600 given by Bell and Newell' is too vague, for it does not reveal
whether the comparisons available between 18-bit integers in that machine are signed or unsigned (an

important question since addresses are unsigned 18-bit integers). Short and wide versions of an operation

must likewise be represented by different names, as context is not always sufficient to identify them. Even

knowledge of operand types is not always sufficient. Some architectures offer two different versions of

integer multiplication, which do not differ in the width of the operands required, but differ in that one

preserves the whole double-width result while the othec throws away the top half: these two operators must

have different names in the machine description.
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Item 3 of the wish list deserves to hc clarified by dfl example. Consider an access to a l1x0O array of words

on a DEC PDP- 10: a [b. cl. The address arithmetic to be performed for this access. in one implementaton of

arrays, appears to the compiler as (using BLISS dot notation):

(a- 1) + (.b* 10) + .c

The indexing, scaling, and addition in this expression could bc performed by the 36-bit signed integer

arithmetic instructions that would normally be used, on the PDP-10, to evaluate sourcc-language integer

expressions. But since the end result will be used as an 18-bit PDP-10 address, all the operations should be

performed using the hardware support for indexing and for cheap 18-bit unsigned integer arithmetic. In the

similar array access a 1b. c + al, even the source-language addition could be evaluated using the special

hardware, if the need to check it for overflow could be obviated by compile-time analysis.

We found it easy to suggest extensions to the machine description language to describe the various

relationships between operators, and to specify corresponding procedures in the compiler to use the

extensions, thereby satisfying in a piecemeal fashion each of the items on the wish list. It would be desirable

to have a single notation throughout the machine description language for describing overflow and overflow-

checking features. Historically, the identification of the problems on the wish list occurred too late for us to

implement most such suggestions, although the total task does not appear to be unreasonably large.

5. Preference and Weak Preference

The sharing of storage by two data items may allow the code for initializing one of them to be omitted.

Frequently, for instance, the value of an expression is initialized from one of its operands, and code can be

saved if the operand and the value both use the same storage. So that the packing process can take such

possibilities into account, an earlier phase (LTN) accumulates a record of all the data movements anticipated

in the object program, called the preference funciion:

[Preference costs are] the costs of moving data around in storage, either because of assignments

in the user program, or because of requirements for special-purpose locations. 10 p.5

Let T be the set of all TN's: the preference relation is a relation on T x T. One TN is related to
another under preference if a daia movement between the locations they represent is anticipated....
Actually, it is more accurate to speak of a preference function, a mapping from T x T to the set of
possible costs. P. 59 The value of the preference function for ... two 'N's [is) the total cost of the
anticipated data movements.l°' .

In practice the preference function incorporated costs that might not be implied by a strict interpretation of

the above definition. The value of the preference function for a pair of TN's included, not just the costs of

in the BISS language,12 the dot (period) denotes the "derefcrencing" operator: thus for variablcs v and w. V + . w denotes the sum

of the addres of v with the contents (value) of w.

W]
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direct data movcments. but any costs that could be eliminated by assigning the TN's to the same storage

location. To clarify this distinction I will discuss the preference costs associated mith the c'aluation of an

integer addition, el + e2. on three different target machines. The names el and e2 denote arbitrary

expressions.

Figure 5-1 shows two possible code sequences for evaluating el + e2 on the DEC PDP-11. Li and L2

denote the locations in which the values of el and e2 were previously computed.

ADD L2, L1 MOV L1, LO
ADD L2, LO

a) Li is re-used b) Li is not re-used

Figure 5-1: Implementations of el + e2 on the DEC PDP-l1

In code sequence I location Li is re-used to hold the sum; in sequence D, Li is not re-used and a third

location. LO, is used instead. Code sequence k is the more expensive of the two locally: the difference in cost

is the cost of the data movement, the instruction to load LO. Thus TI, the TN representing el, and TO, the TN

representing the sum, are related by preference: this is the "classic" preference relation defined in the above-

cited passages. The value of the preference function is the cost of that instruction: the two bytes of

instruction space it takes up (assuming LO is a register), or the processor and memory cycles it requires at

execution time (possibly weighted by its expected frequency of execution).

Figure 5-2 shows two exactly analogous code sequences for the DEC VAX-li. As in the previous example,

1.1 is re-used in code sequence g but not re-used in sequence k.

ADDL2 12, Li ADDL3 L1. L2, LO

a) Two-address instruction b) Th ree-address instruction

Figure 5-2: Implementations of el + e2 on the DEC VAX-11

Again, sequence b is more expensive, but here there is no explicit data movement code on which to "blame"

the added cosL The TN's, TI and TO, are related under weak preference. We treated the situation as if there

were a preference relation: the value of the preference function for the two TN's is the difference in cost

between the two code sequences. (The cost of the extra operand access is one byte of instruction space, or one

memory access at execution time.)

'V,
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Figure 5-3 shows analogous code sequences for the Liermore I.abs S-I. 6 Here there is not e~en a clear cost

ditrerence between the two code sequences. In sequence h the sum must be produced in one of two particular
registers. denoted RTA and RTB, and this restriction could have some influence on global allocation raid

costs. Locally, however, sequence h is not more expensive than sequence A.

ADD.S Li. L2 ADD.S RTA, L1, L2

a) Two-address instruction b) Three-address instruction

Figure 5-3: Implementations of el + e2 on the LLL S-1

It is difficult to suggest a straightforward way of describing this situation in terms of preference costs or a

preference function. The practical reflection of this theoretical problem is that it is not clear just how the
packing algorithm described in RAOC 10" ch- 10 should take into account the very weak preference relation

between TI and TO in cases like this.

6. Access Modes
Many target architectures include non-trivial operand addressing mechanisms, such as indexing, scaling,

and indirection. Convenuonally, these features are meant to be used to evaluate "addressing expressions", as

the instructions themselves evaluate arithmetic or logical expressions, but the boundary between the two is
sonetimes blurred, as observed in Section 4.1. In our machine descriptions, each legal combination of

addressing mechanisms, including relatively simple ones such as direct access to registers or immediate access

to constants, is represented by an access mode (AM), a pattern tree similar to the pattern trees that describe the

effects of instructions. In principle, opportunities to use addressing hardware can be discovered and

evaluated by the same pattern-matching mechanism that we use to find opportunities to use instructions. In

the PQCC system, however, we extracted-AM processing from both LTN and CODE and put it in a separate

(-Preprocessing) phase, AM D.

This was intended to simplify I.TN and CODE. Because the complete results of the preprocessing must be

recorded from one phase to another, however, different algorithms were introduced for the preprocessing

phase, possibly increasing, not decreasing, the complexity of the system as a whole. Certain optimization

strategies were also to have been promoted. as claimed in RAOC. 10 ' ch. 4 by the separation of AMD as a phase

by itself, but we do not have any data on the practical value of these strategies.

AMD records the results of the analysis that it performs by associating with each program tree node an

undifferentiated set (represented as a bit mask) of the AM's that could be used when the value represented by

,. ..-
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the node is used as an instruction operand. It %as intended that CODI should select from this set on the basis

of the costs and benefits associated with the AMt's, plus loading costs and other rclevant data in the machine

description. We found, however, that cost is not the only criterion for selecting AM's from the seL and the
"undifferentiated set" does not provide enough information to make the right selection in all cases. Consider

the following rather unusual implementation of the assignment a := b, in which a is a statically allocated or
"own" variable, on the DEC PDP-11:

MOV # A. RO • load the address of a into a register
MOV B, @RO • modify a by indirection through the register

Of course. the normal implementation of the assignment would not use an intermediate register, but the

implementation given here would be useful if it were desirable to have the address of a in a register at some

later point in the program. Note that in this code sequence. both operands of the first instruction, and one

operand (the second) of the second instruction, all refer to the same node in the program tree, that is, to the

reference to a. Yet the three operands use different AM's, and CODE must be careful to use the three AM's

exactly as given here and in the correct order. Thus, the cooperation between AMD and both LTN and

CODE must be somewhat closer than what we had envisioned. 10' di. 4

It is appropriate to discuss the estimation of "benefits" of tree patterns in this section, since we designed

and implemented a realistic model of benefits for AM's, but never had such a model for instruction pattern

trees. As mentioned in Section 1.2, the benefit of an AM, such as indexing, is the cost of the code saved by

using it instead of using, for instance, less powerful AM's, such as indirection, or by foregoing the use of any

but the very simplest (direct-access and immediate-access) AM's. as when explicit shifting or multiplication is

used instead of automatic scaling. It is hard to apply this rather vague definition to define an absolute benefit

for a particular AM, but we can build a table of benefits from consideration of the relative benefits of

competing AM's. For instance, the difference between the benefits of the single and double indexing AM's

used in the example in Figure 2-1 should be the cost difference between the code sequence using one AM and

the code sequence using the other, under identical (and ideal) conditions of register allocation i.e. when xb and

i are both assigned to registers. The base on which the tower of relative benefits rests must be a foundation of

absolute benefits, and these are defined in an obvious and intuitive way be assigning benefit 0 to the AM's

that represent direct access to the various different classes of registers and memory.

Since operand lo-Aiing costs cannot normally be known before the packing process has completed. the

selection of AM's in early versions of LTN was strictly benefit-driven. The algorithm presented by

Cattell 2. P 37 as the "Maximal Munching Method" also has this character. The application of purely benefit-

driven strategy to AM selection is described in detail in RAOC.' 0 p. 82 ,he algorithm given there never

assumes that an operand will use a simple direct-access (called "molecular") AM if a more exotic

("compound") AM is available instead. This strategy is unsatisfactorily simple-minded: even as early as the

4-
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SI'N phase some estimate of operand loading costs must be made if a realistic description of storage

requirements is to be passed to PACK.

An example of the problems that arise from a too straightforward application of the maximal munch rule is

the handling of a typical access to a variable, v. On many or most architectures this can be done either by a

direct access, or by loading the address of v into a register followed by an indirect access (through the register).

The indirect-access AM has a higher benefit than the direct-access AM; to use Cattell's terminology, it

munches more of the program tree. Unless the address of v is already available, however, the cost of loading

it outweighs the benefit difference, and direct access is the "normal" way to access v. If LTN fails to take this

cost consideration into account, it invariably assumes that indirect access will be used, and creates a TN to

represent the location into which v will be loaded. As discussed in connection with Figure 2-2, the allocation

of these extra TN's causes storage to be wasted and misused.

The July 1981 version of LTN, and indeed Cattell's earlier code generator,4 were patched so that at least

simple variable accesses were treated correctly. More generally, LTN must be prepared to assume the

necessity for operand loading in some situations, and to take its cost into account in the selection of AM's.

Summary

In view of the motivation and even the name of the research project, perhaps the most important issue

discussed in this paper is the use of compiler generation tools. It is disappointing that we did not go farther

with the techniques of automated search and analysis than Cattell had gone. Even the primitive CGG that we

used, however, enabled us to keep target-architecture knowledge in a single machine description, while using

it in more than one phase. The significance of this can best be appreciated by the compiler writer who has

attempted to keep up parallel maintenance of separate target-architecture knowledge sources (code or tables)

for separate phases.

Next in importance after the questions of compiler-compiler structure must come those of the compiler

phase structure, discussed in Section 2. There is a fundamental phase ordering problem involving register

allocation and code selection, in that either can produce more nearly optimal results if the other has already

run. Our three-phase approach to this problem should not be regarded as a "solution" in the sense of

definitively making the problem go away. It is simply a practical structure for addressing the problem, which

can be adapted to small or large compilers (by adjustment of the size and ambition of the packing phase), and

which leaves room for further experimentation in code generation and register allocation techniques.

le problems discussed in the later sections of this paper are not quite so fundamental. It should be clear

from the discussion of data types and access modes that we have only scratched the surface of a systematic

*1
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treatment of these areas. It is to be hoped that their importance will be more widely recognized in the cunent

resurgcnce of interest in retargetable optimizing compilers.
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I. Summary of Phase Performance

The 30+ implemented phases of the July 1981 compiler were combined, as it was linked/loaded, into eight

sequential phases, of which all but the output lister are summarized here. All measurements were done with

full support debugging turned on. This has been measured as increasing the size by a factor of 2 and the time

taken by a factor of 4.



Phase (ode size Data size Sped / (jl Vitode I )ccription

Front end 14999 7220 9400 Parse.: constructs tree
CWkVM 27722 24521 3259 Comnerts Ada con.tllCLS to ICOL
low 17410 2007 7200 l)ocs global data flow anal.sis
Delay 11316 7813 4190 Does pre-CG optimizations and AMi)
MI)X 1442 730 581 Converts Ada opcrators to those in MD
TNBind 21609 2355 - LTN plus PACK
Code %00 8524 4913 Code selection and peephole optimization

II. Selected Extracts from a Machine Description

Here I will show some selections from the description of the DEC VAX-11, the one intermediate-format

machine description that had been used and debugged as of July 1981. 1 will only give selections from

sections of the description that are relevant to this paper. that is, the code selection templates ("productions")

and the access modes. The machine description also included descriptions of the storage structure (storage

bases and storage classes, as described elsewhere2 Io), and a means of describing which access modes can be

used for each instruction operand (operand classes), but a presentation of these would be outside the scope of

this paper.

Figure 6-1 shows three code generation templates. Each consists syntactically of a name (optional)

followed by a sequence of attributes and their values, delimited by colons and semicolons in an obvious way.

Using the terminology of Section 1. the pattern in each template is the value of the pattern attribute, and

the code sequence is the value of the action attribute. The following commentaries may facilitate the

understanding of Figure 6-1:

* All three templates describe operations on 32-bit integers. The customary operator names (" +
and "NFQ") in the patterns are given a suffix ("i") by convention to distinguish them from similar
operators on 8-bit, 16-bit, and 64-bit operands.

* The first template named ADD describes two-address addition: the second describes three-
address addition. Their pattern trees are identical, the only difference between their pattern
attribute values being the presence in the former template of a predicate. same0l. evaluated
separately from the pattern-matching process.

* 'l'e type and the booflean Notarget attributes arc among the "cryptic notations" mentioned in
Soction 1.1. describing features of the pattern and/or code sequence that could in principle be
derived from inspection of them by an analysis program. The type attribute gives the schema in
which the template is to be classified. Schemas, described by Cattel- and in RAOC 0 . are beyond
the scope of this paper. I'he Notarget attribute is relevant only for the last two templates: its
presence signifies that none of the operands of the pattern tree is a target upvrand, as defined in
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production tJEQ1
type: flow;
pattern: $1:RL NEQi $Z:RL;
action: emit cmpL, $1, $2/

emit bneq. ST/
emit br, SF;

space: 7;
time: 49;
benefit: 3;

end production

production ADD
type: value;
pattern: SO:WL :a $1:RL '+1' $2:RL sameOl;
action: emit addL2, $2, SO;
space: 3;
time: 49;
benefit: 5;

end production

production ADD
type: value;
pattern: SO:WL :- S1:RL '+i' S2:RL;
action: emit addL3, $1, $2, SO;
NoTarget;
space: 4;
time: 49;
benefit: 8;

end production

Figure 6-1: Code Generation Templates

Section 1.2.

e The space and time attributes were intended to describe costs. The former was actually used,
and gives the size of the code scquepcc in bytes: the latter was not even filled in correctly, and the
value "49" was used uniformly throughout to make this obvious. If both attributes had been
implementcd (i.e. if the time attribute were an execution time in units of. for instance, one
processor cycle), the compiler writer could specify a function to be used to compute the overall
cost of the code sequence from these two attribute values. In keeping with this philosophy, the
benefit of the template should have been described by two attributes. but only one is present, and
the value with which it was filled in. which happens to be the number of nodes in the pattern tree,
is wildly inappropriate as a starting-point for computation of a genuine benefit figure. As
mentioned in Section 6. we never did design a realistic model of benefits for instruction pattern
trees.

Figure 6-2 shows two access modes. They use an attributc-value syntax similar to that of the code

generation templates. It is striking that there are no pattern trees: AM processing, having been extracted

from IA'N and COI)I" into a separate phase, uses algorithms (sketched in RAOC'0 ch. 4) that are quite

-~ .'-.:!
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am B<R>[R]ab
size: 8;
benefit: 9; 1 (AddI3 B<R>, [R2], R3)
sc: M_bSC;
format: B<r>[R]_A1;
space: 2;
time: 0;
type: Interesting;
parms: SO: Rv_l L. $I: R-v_1 R L. $2: I.b R R;
transforms

{R_v-l} add-op ( B<R>_a_b } ; lwaw mod
end transforms;

end B<R>[R]_a-b

am B<R>[R]v b
size: 8;
benefit: 12; I (Add13 B<RI>, [R2]. R3; MovI 9R3, R4}
sc: M_bSC;
format: B<R>[R].A1;
space: 2;
time: 0;
type: interesting;
parms: SO: R-vj D L, SI: R_v. D R L, $2: I-b D R R;
transforms ( B<R>[R]a-.b } fetchop;
end transforms;

end B<R>[R]_vb

Figure 6-2: Access Modes

different from the usual pattern-matching and that do not use the pattern tree directly, but use information

abstracted from it. This information appears as the p arms and transforms attributes: a full explanation of

these is outside the scope of this paper. The abstraction of this information would ordinarily be the task of the

analysis program.

Both AM's describe double indexing with scaling, using an ,'ffset that is one byte wide, to access a quantity

that is one byte wide. (By convention, the capital "B" in the name of the access mode denotes the width of

the offset, and the lower-case "b" denotes the width of the data to be addressed.) The first AM is for use by

instnctions that use only the address computed, while the second is for accessing the memory location at that

address. Thc attributes are explained as follows:

* The size is the width (in bits) of the data addressed.

* The space and time are costs (time is not implemented, just as in the code generation
templates), and the benefIt is a benefit, computed by a method related to (i.e. an earlier version
of) that described in Section 6. 'he comment after each benefit value is the code sequence, or
substitute method of "simulating" the effect of using the access mode. from which the benefit of
the access mode was derived.

.... ... _ .. ..., ., ,: .. ., ,.' , .. JI
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*The format is awnCipIla furoutput. Anglk hrackccs arc used in plL~e of parentheses for obscure
reasons. [he sc attributew1COC dpiie t ' VrJe cla.., in this ca±se mieifoix (b% cc-addressed). of the
data being address;ed. 'Ilic typo ittribute. like die attribute of the same narnc in code generation
templates. is it classiticiition of the access mode by which the set of acccss modes is sorted and
searched. Discussion (of these attributes is beyond dhe scope of this paper.
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